
CONCLUSIONS

This analysis evaluated disease symptoms as related to smoking,
consumption of alcohol, exposure to TSP and S02 outdoors, diet, age and
earnings in 1973 as X proxy for socio-economic  status. The study found
that the only statistically significant relationship for air pollutants, which
had the expected signs, were between TSP and cough and coronary heart attack
and between SO and chest pain. A slightly less significant relationship
was found betw~en TSP and shortness of breath.

The most significant “explanatory variables” for respiratory symptoms
were dieting, smoking, alcohol consumption, socio-economic  status, and air
pollution. In this context, a positive relationship was found between short-
ness of breath and dieting, smoking, TSP concentrations, and one of the alcohol
consumption variables. S02 and earnings were found to negatively effect short-
ness of breath. Dieting, age, earnings, and to a lesser extent SO had
negative effects on coughing while smoking, alcohol consumption an~ TSP had
positive effects on the symptom.

The need to diet and smoking were consistently found to be positively
correlated and economic status negatively correlated with cardiovascular
system problems. Significant positive relationships between alcohol consump-
tion and cardiovascular problems were found for chest pain and to a lesser
extent coronary heart attack. Age was found to be negatively correlated
with the occurance of all cardiovascular symptoms. However, a significant
relationship between age and a symptom was only found for coronary heart
attach. TSP was found to have a significantly positive effect on the incidence
of coronary heart failure while S02 was found to positively effect chest pain.
S02 was found to have a negatively significant effect on coronary heart
attack. Finally, no air pollution variables were found to significantly
influence severe chest pain. These findings suggest that the air pollution
variables may be “masking” or replacing some other significant affects. Only
similar analyses will perhaps lead to a net effect on ambient air quality
on certain disease symptoms.

The list of symptoms were collected from the 1967-68 period while air
pollution data were recorded for the year 1977, by zip code. Thus, only
a weak inference can be made between air pollution common to times and
symptoms. Because of time and manpower limitations, past air pollution
data have not been included, inclusive of where the twin resided since 1945.
Thus, unless the twin resided in the same place and there were no substantial
changes in ambient air quality between the 1960’=nd late 1970’s, the link
between exposure and symptom can occur only be chance. Future research should
center on more closely aligning symptoms with similar locations of exposure.

Evaluation of ordinary least squares and a more advanced
econometric analysis called “probit” yielded almost identical
for a “scale” factor on the coefficients over at least fourty

technique of
results except
variants of
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the preliminary model. This leads us to believe that OLS may be a reasonable
technique to apply to more “robust” variables and theoretical systems.

Adequate variables measuring total inhalation of particulate, diet
in terms of fat consumption, and “stress” variables have not been modelled.
It is unlikely that current consumption of cigarettes, alcohol consumption
as measured by a weighted sum of pure alcohol, or the need to diet, accurately
reflect the impact on body processes. For example, a “heavy” smoker may have
quit smoking in the early 1960’s and yet retain some of the respiratory
symptoms. Until these variables are adequately measured by complete exposure,
it is unlikely that they will be useful for interpretation or prediction for
policy purposes.

The effects of air pollution on health symptoms found in this study
are roughly consistent with earlier work. However, with minor exception,
all earlier sutdies focused on the effects of air pollution on mortality
and morbidity. In four separate studies, Lave and Seskin (20)(21)(22)(23)
McDonald/Schwing  (24), Crocker (25), and Liu/Yu (26) all found partial
linkages between air pollution and mortality and morbidity. Ostro (27)
estimated the effects of total suspended particulate on work loss days. A
comparison of the Ostro and Crocker et.al. results to the results presented
in this study revealed that estimates presented in this study, Ias predicted,
are of smaller magnitudes. Only Page (28) used a methodology remotely similar
to the symptom-pollution relationships analyzed in this study. Page’s
measure of health effects was a self reported diary from 1,000 victims of
respiratory illness as to whether they felt better, worse, or the same.

In order to derive total savings in health care costs, a 30 percent
improvaent in ambient air quality was assumed. The societal prevalence and
death rates for nine diseases were used as proxys for the probability of
incurring a disease or death given the presence of a symptom in the sample
population. In this context, estimates of cost savings for a 30 percent
reduction in maximum 24 hour ambient concentration of TSP and S02 was
estimated to be over $4 million in males 55 to 65 years of age. Extrapola-
tion of these savings to the total U.S. population yields an estimate of
health cost savings of nearly $100 million.
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APPENDIX 1

METHODOLOGY USED FOR FOOD CONVERSIONS

Table 17 presents the figures used to calculate the yearly consumption
of different nutrients for the questionnaire respondents. In order to cal-
culate Table 17, several assumptions were made on the serving sizes, given a
questionnaire response. These assumptions, along with the figures in Table
19 were used to estimate Table 17. Figures in Table 19 were gathered from
alternate sources (29)(30)(31)(32).

The following procedure was used to calculate nutrients ingested per year
from consuming pasteries and candies:

(1) if more than one response was given the sample was deleted, and

(2) if only one response was given then the following was assumed:

Response Assumption

O never O serving/day
1 several times a day 3 servings/day
3 once a day 1 serving/day
5 less often .5 serving/day

Nutrients in pork, frankfurters, beef, cereal, eggs, fish, vegetables
and fruit were determined via the following procedure.

(1) if more than one response was given the sample was deleted, and

(2) if only one response was given then the following was assumed:

Response Assumption

O never O servings/day
1 daily 1 serving/day
3 once or twice/week 6 servings/month
5 once or twice/week 1.5 servings/month
7 less often 6 servingslyear

For example, to determine the grams of protein consumed from eating a
serving of frankfurters daiiy, multiply the 7 grams/day from Table 17 by
365 days in the year, i.e.,

7 gr/day* 365 dayslyear = 2555 gr/yeq

which gives the yearly consumption of protein from consuming frankfurters
daily. If the respondent answered that he consumed frankfurters once or
twice a month, it was assumed they consumed 1.5 servings per month. Therefore
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the equation to calculate the grams of protein ingested in a year is

1.5 semings/month  ● 7 gr/serving ● 12 months/year = 126 gr/year.

The yearly consumption of a nutrient for each respondent may be calculated
by summing over the types of food for each nutrient. The yearly figures were
used in the regression analysis to determine the importance of these nutrients
to different symptoms reported.
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l’ork3
(60) 1

3
5
7

Frankfurters
3

(61) 1
3
5
J

Beef
3

(62) 1
3
5
7

Cerea13
(63) 1

3
5
7

Eggs3

7-———

Fis113
(65) 1

3
5
7.—— ———  —

vclw1blcs3
(66) 1

3
5
7

7300 8760 4380 3825 0 0
1.4.40 864 432 324 0 0
360 432 216 162 0 0
120 144 )2 54 0 0

2555 5475 1> a Ila 365 0
252 540 n. n a 36 0
126 270 tla na 18 0
42 90 Ila [la 6 0—

J 300 9855 4745 4745 0 0
1440 972 468 468 0 0
360 486 2>4 234 0 0
120 162 78 78 0 0.—— ————

730 - 1):1 m 7665 0
72 - 11:) n a 756 0
36 - 11;1 Ila 318 0
12 11:1 11<7 1.26 0.—— .— . —— —. .

4380 4380 2190 1/, [,()
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54 na na 399.6 14.4
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I
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0 7.92
0 3.96
0 1.32

n a

1-
40.15

na 3.96
na 1.98
na .66

18250 58.40
1800 5.76
900 2.88
300 .96

L
o 7.3a
o .72
0 .36
0 .12

430700

L

109.5
42480 10.8
21240 5.4
7080 1.8

1715.50
169.20
84.6c
28.20

511. C
50.4
25.2
8.4

284.70
28.80
14.04
4.68

292
28.8
14.4
4.8

J---1460 18.25
144 1.8
72 .9
24 .3

1-182.5 40.15
18.0 3.96
9.0 1.98
3.0 .66

l--36.503.6
1.8
.6

na 21.9 985.5 10.95
na 2.16 97.2 1.08
na 1.08 48.6 .54
Ila .36 16.2 ~

18.25 730 47.45
1.80 72 4.68
.90 36 2.34
.30 12 .78

_—.

3825

I

985.5
324 97.2
162 .48.6
54 16.2

]095 292
108 28.8
54 14.4
18 4.8——

;825 912.5
.324 90
162 45
54 15— -

1460 146
144 144

72 7.2
24 2.4

19710 803
194/4 79.2
972 39.6
324 13.2— .

12410 365
1224 36
612 18
204 6

3650 292
36o 28.8
180 14.4

4.860 _

TABLE 6.17 (continued)
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5
7———

I’oocnotes: (1)

(2)

(3)

There are two types ,~f figures Itere, Var. 51, 52 and 60-67 already have the questionnaire response
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TABLE 6.18 FIGURES USED TO CALCULATE YEARLY CONSUMPTION OF NITROSAMINES  BY
QUESTIONNAIRE RESPONDENTS BY TYPE OF FOOD CONSUMED AND QUESTION-
NAIRE RESPONSE

.

Type of Food (Var. #)

Pork

Frankfurters

Beef

60

61

62

65

Response

1
3
5
7

1
3
.5
7

1
3
5
7

1
3
5
7

Nitrosarnines (ug)

31.03
3.06
1.53
.51

224.84
22.18
11.09
3.70

na
na
na
na

31.03
3.06
1.53
.51

Note: Minimum values are used here

References: Unpublished manuscript by Ron Shank for EPA Nitrates report



T~LE6,1,9 LEVELS OF NUTRIENTS AND NITROSAMINES  PER SERVING BY TYPE OF FOOD

Nutrients
Type of

Fatty
‘rotein FaLS Uns

(g )m . Q!!l _G!z

5 15 10

4 18 3

. .———

2 1 na

—

9 9 3

9 - na

.—

.3 .1 na

.3 .1 oa

—.—

.1 - na

.1 - na

20 24 12

.—.—

20 27 13

—– .—

IAcid :arbohyclrtites LNiLro-
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(m ) (u ~

:alciun

( m a )

33

30

24

288

296

4.6

4.6

5.0

5.0

9

9

fit. A

(lU)

200

160

A,iboflavin  Niacin %iamir

(gin)

.05

silt—-
fi!!o.
5

— .

5

—

na

5

na

na

—

ua

—

na

na

9
—

13
—

sugar

Q!!.!l_

30

———

32

fiber
&)_

o

0

.05

0

0

0

0

—.

o

0

0

0

Food C,.  -..4.,”

Pa6teries
(51)

Candy
Milk CIIOC
(52)

Bread
White
_(53)

Whole
Milk
(54)

Skim Milk
(55)

COf feel

( 56)—

Coffee WI
tsp. sugar
Q)

Teal
(58)

Tea WI
tsp. sugar
(58)

Pork
JQ)

Beef
(62)

6 I o.10 I .5z.2 .2

.06 .7

.41 .2

.44 .2

2 Oz+
bar

.04

F.7’ 0

.1 0

1 slice*
22 slice/
loaf

1 glaas*

1 glass*

1 cup*

1 cup
Wfl tsp.
sugar

1 cup*

13.95

12

12

.8

11.8

.9

11.9

0

0

.07

.07350

10

0

0

——

0

0

0

50

—
+----.1 0.09

—
.23 0

.23 0

.20 0

- - -

.20 0

2.7 .085

. ..—

2.5 na

.01

w
W
0

.01

=-----h 0

5.04 .1

.22 4.7

.16 4.0

0

.78

1 cup
w/1 tsp.
sugar

3 Oz+

3 Oz
+

.05

TABLE 17 (conLinued)



Frankfurters 2 Oz+
~61)

Cereal 1 Cnp
Cornflakes no sugar
(_63)

Eggs 2
(64)

Fish 3 Oz+

lliuldock
(65)

Vegetables 1 cup
(66)

Fruit-apple 1 med
(67)

Footnotes:

Notes: * -
+-

+-

preferences:

2

12

17

3

15

12

5

—

—

na

6

3

na

na

rm

na

4

1

nn

na

1 0

21 0

0

5 0

Z2.2 .8

——

16 2

na

0

——
1180

na

50

.11

.02

. 3

.06

.05

.02

1.4

.5

— .

2.7

2 . 0

.1

.8

.11

.10

.03

.13

.04

3

4

54

31

10

8

.8

—

.4

!.2

1

. 8

.4

(1) all figures came from reference (1) except for those which came from reference (2).

These foods are measured in same manner as in questionnaire
Daily recommended servings are nOt used here as both references 1 and 2 used 3 OZ. as an average

.616

——

0

0

.085

0.

.0

8erving
Given there are no dally recommended servings for Lhese variables. We assumed the average serving
pascery aa 1 and an average serving of candy as a candy bar

1. Ilamilton,  I?.M.  aid E. Whitney, Nutrition: Concepts and Controversy, West publishing CO..
St. Paul, Minnesota, 1979.

2. NaLional Oalry conncil,  Guide to COOI.I EaLing,  1980.
3. NutriLion Search Co., NutriLicm Almanac, McCraw-11111  Book Co., 1975.
4. Shank, R., unpublished msnuacript for EPA Nitrate’s Report, ch. 8, 1977.
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Chapter VII

ANALYTICAL PRIORS ANl THE SELECTION OF AN “IDEAL” AIR
POLLUTION EPIDEMIOLOGY DATA SET

INTRODUCTION

Widespread concern with the health effects of economics benefits
generated by air pollution control programs has provoked a number of
statistical studies of the association between air pollution and health
status. However, the appropriateness of methodology and accuracy of the
results of these studies have been widely disputed. The purposes of this
paper, therefore, are threefold. First, we examine the role of optimal
decision rules in testing the validity of price information to produce “best”
estimates of the human health losses attributable to air pollution and the
economic valuation of these losses. Secondly, we examine the use of
price-information decision rules in previous air pollution-human health
studies. Finally, based on optimal decision rules, we summarize statistically
accepted prior information about the elements of an “ideal” air pollution
epidemiology data set.

Statistical estimation of the degradation of health due to air pollution
and the economic valuation thereof requires the use of prior information
decision rules in four principal areas: (1) model selection (e.g.,
simultaneous, recursive, errors in variables, or single equations); (2) choice
of functional form and the dimension of the design matrix; (i.e., matrix of
exogenous variables); (3) the choice of values assigned to each element of the
design matrix, if under the control of the experimenter; and (4) choice of the
density function of the dependent variable. Most statistical analysis
involved regressing a dependent variable (usually mortality and morbidity
rates on time-to-failure for a system) a set of covariates which have been
postulated to explain the variation in the dependent variable. Imposing prior
information through exact parametric restrictions (whether correct or not)
reduces the variance of estimated parameters. However, if incorrect, the
restrictions increase estimator bias. Thus , the use of prior information,
which is always incorrect to same degree except by chance, necessarily
involves a tradeoff between the bias and efficiency of estimated parameters.
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We evaluate this tradeoff in terms of the risk, i.e., the expected lOSS
associated with each estimated parameter~ measuring loss as the squared error
of each estimated parameter relative to its true value, risk equals the sum of
estimated parameter variances and squared biases. Stated somewhat
differently, the researcher must choose decision rules which maximize the net
benefit from utilizing prior information, where the benefit of such action is
the resulting variance reduction and the cost is the resulting increase in
bias. He seeks a middle ground somewhere between the overly restrictive case
(high bias, low variance) and the totally unrestrictive case (unbiased, high
variance).

In seeking decision rules for imposing prior information which minimize
risk, there are valuable guidelines for accepting or rejecting hypotheses of
exact prior restrictions (the most common type) and inequality restrictions.
Regardless of the correctness of equality restrictions the positive-part
Stein-rule estimator introduced by Baranchik (1964) which possesses minimum
risk compared to the unrestricted estimator or the pre-test estimator (based
on the standard decision rule to accept or reject the null hypothesis at a
pre-specified level of significance). In addition, if inequality restrictions
are correct in sign, they always exhibit less risk than the unrestricted
estimator [see Judge, et al., 1980].

Our general conclusion regarding previous analysis of the effects of air
pollution on human health and the valuation of these impacts. is that the pre-
ponderance of attempts to impose prior information have failed to minimize
risk. Weak priors have rarely been correctly (if at all) tested before being
imposed, while other strong but untestable priors have been ignored. We also
conclude that the ideal data set, based on optimal decision rules, is not
comprised of an exhaustive set of explanatory variables, since this would lead
to unacceptably large estimator variances. Conversely, the ideal data set
does not consist of a design matrix which excludes potentially important
explanatory variables previous to statistical testing. To the extent that
magnitudes of explanatory variables are under the control of the experimenter,
the values assigned to an ideal data set should minimize risk subject to a
given experiment budget constraint. If variables are not under the
experimenter’s control, the composition of the design matrix should be
determined by optimal statistical tests based on prior information. An ideal
data set can only be defined in conjunction with such information.

The plan for the remainder of the paper is to examine optimal decision
rules for the use of prior information in section II and, in light of this,
provide a critical review of the epidemiological  literature measuring the
effects of air pollution on human mortality and morbidity in section 111. A
similar review of the literature which attempts to value these adverse health
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affects is presented in section IV. Based on statistically accepted priors,
in section V we suggest superior data sets for potential analysis. Finally,
conclusions about optimal use of prior information are drawn in section VI.

USE OF PRIOR INFORMATION
.

Statistical estimation of the effects of air pollution on human health is
impossible without the use of some prior information. This may take the form
of model selection, choice of function form and dimension of the design
matrix, selection of the values of each element of the design matrix (for
variables under control of the experimenter), and choice of the density
function for the dependent variable. The imposition of prior restrictions in
these areas leads to an increase in the efficiency of estimated parameters.
However, if restrictions are incorrect, estimated parameters are biased [see
Judge, et al., (1980, ch. 11)]. Thus, the inescapable act of imposing prior
information requires that the econometric researcher walk a tightrope between
efficiency, on the one hand, and bias, on the other.

We proceed, therefore, to seek information regarding the optimal use of
prior information which minimizes risk. In the context of regression
analysis, we first define loss as the cost incurred if our estimate of the
true value of the parameter vector of B is ~. Adopting a squared error loss
criterion, we may write loss as

L = (+6)’ (;-8), (1).—— —
.

involving the k-dimensional vectors !3 and f3. Risk is defined as the expected
value of loss:

. A

P = E [(6-6) ’(6-6)], (2)
.

which equals the sum of variances for each element of f3 plus the sum of
squared biases for each element of 8. Our objective is to minimize the risk
from imposing prior restrictions.

Choice of Functional Form and Dimension of the Desire Matrix

We first consider this objective for the choice of functional form and
dimension o

7
the design matrix within the context of the testing of nested

hypothese~ for a single equation regression model. Four types of prior
information may be imposed: exact restrictions, stochastic restrictions,
inequality restrictions, and prior density functions. We compare rhe risks of
utilizing these types of prior information to that of the unrestricted
estimator, the pre-test estimator, and the Stein-rule estimator. The pre-test
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estimator is simply the standard nested hypotheses test procedure whereby the
null hypothesis (generally i3 = O) is accepted or respected based on some
predetermined level of significance. One example of a pre-test estimator is
accepting or rejecting nested models of the quadratic BOX-COX (1964) form
based on pre-determined levels of the likelihood function. Restrictions on
estimated parameters lead to the inverse semi-log, semi-log, translog,
generalized linear, quadratic, generalized square root quadratic, and linear
models. [See Berndt and Khaled (1979)]. Choice among these nested models is
typically based on the likelihood ratio test statistic. Additional res-
trictions allow testing of hypotheses about consumer behavior (homotheticitv,
additivity, and symmetry) or cost,
(homotheticity, homogeneity).

Exact information is the most

. .
production and profit function

common type of prior restriction. If the
exact prior information is correct, the restricted least squares estimates are
“best” estimates (i.e., minimum variance, unbiased). Incorrect exact prior
restrictions, however, lead to biased estimates, which have smaller variances
than under the correct model. The risk for the restricted least-squares
estimator increases monotonically and exceeds the constant risk of the unres-
tricted maximum likelihood estimator, (MLE) over a wide range of hypothesis
error under the assumptions of the general linear model. Further, the
pre-test estimator has greater risk than the MLE estimator over a wide range
of hypothesis error and hence, is inadmissible under our risk function
criterion.

Stein-rule estimators [see Judge, et al. (1980, pp. 432) and Judge and
Bock (1978)] exhibit less risk over the entire parameter space than the un-
restricted and restricted MLE estimators, and the pre-test estimator. The
positive-part Stein-rule estimator involves testing the hypothesis that @o =
O, where 6 is a vector of K2 parameters.o lf ‘(k2)’

the value of the

likelihood ratio statistic, is less than or equal to C
(k2)

, where

c
0(k2)

< c*(k2) < 2cO(k ~ and cO(k ~ = ‘ k-2) ‘ T-k) ‘k(T-k+2) ‘
2 2

where k is the total number of variables and T is the total number of
observations, we exclude the k variables from the model.

$
Otherwise, we

employ the Stein-rule to trans orm the unrestricted MLE estimates using

C* (k2) and ‘(k2)
[see Judge et al. (1980)]. A second type of prior
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information involves the use of stochastic prior information. Restrictions
are assumed to hold subject to a normally distributed random vector. The
sampling results for this type of prior restriction are parallel to those for
the equality restricted estimator [see Judge et al. (1980)]. Inequality
constraints comprise a third type of restriction. The risk function for the
inequality constraitit (when the direction is correct) is less than or equal to
that of the MLE over the”whole range of the parameter space the risk of the
inequality pretest estimator (again when the direction is correct) is less
than that of the traditional pretest estimator over almost the entire
parameter space [see Judge and Yancky (1978)]. This result, which is
particularly powerful, has largely been ignored by applied econometricians.
It implies that risk can be reduced, sometimes substantially, by imposing sign
constraints on estimated coefficients, when these signs are prescribed by
economic theory. Thus for example, estimated parameters in health
effect-pollutant exposure studies should be constrained to be non-negative.

Finally, prior information may be imposed in regression analysis through
Bayesian procedures [see Zellner (1971)] which require the selection of prior
density functions. The Bayesian procedure, a systematic way of combining
sample information with prior information expressed as a density function,
minimizes average risk for correct prior densities. However, economists have
made little use of this technique because of their general reluctance to
specify and test prior densities. The use of priors in model selection is
simply a generalization of the procedures of their use in determining
functional form and dimension of the design matrix in a single equation
context. The use of MLE estimators, pre-test estimators, and Stein-rule
estimators to test the validity of restrictions on the parameters in a
simultaneous system is totally analogous to their use in a single-equation
model. Appropriate restrictions could yield a recursive systems, a system
with unobservable variables (but identifiable equations), or a Zellner
seemingly-unrelated equation system [see Zellner (1962)] as restrive forms of
the general jointly dependent system. Full-in format estimates are consistent
and asymptotically efficient. Although single-equation estimators of a
simultaneous equation model are biased and inconsistent, they possess minimum
variance. In small samples, their risk as measured by mean square error is
generally much higher than that of the full- information methods, based on
Monte Carlo experiments, even with extremes of multicollinearity,  [see
Atkinson (1978) and Johnston (1972)]. Thus, the modeller is well-advised to
first estimate a simultaneous equation model, if justified by priors, and
apply the positive-part Stein-rule estimator to test nested hypotheses on
restricted coefficients. Even if incompletely specified, additional
restrictions across equations on parameters and, possibly, disturbance
covariances aid in identifying the response structure. In addition, when
these same cross-equation restrictions are viewed as hypotheses, significance
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tests may be used to assess the statistical validity of the model.

Unobserved variables are a special class of errors-in-measurement
problems which include omitted explanatory variables, and simultaneous
equation systems.

.

In the air pollution epidemiology literature, attempts to grapple with
the measurement error issue have been few. Crocker-Schulze,  et al. (1979)
raise the simultaneity issue for both air pollution-induced mortality and
morbidity. Page and Fellner (1978) employ factor and canonical correlation
analysis to attack the unobserved variable problem with respect to air
pollution-induced mortality. Otherwise, air pollution epidemiology research
largely consists of a vast number or single-equation regressions. Let us
briefly examine the relationship between simultaneous equations, unobserved
variables, and errors-in-measurement and their impact on estimator risk with
the following example. Following Weld and Jureen (1953), who argued that many
simultaneous equation relationships involving jointly dependent variables are
really recursive relationships, we trace the chain of events from pollutant
exposure to behavior change in Figure 1. The outcome at each step in the
sequence is conditioned by the outcome in the previous period. Thus, for
example, pollution does not immediately affect self-reported disability but
rather has a delayed effect via its impact upon metabolism and organ system
functions. Consider the following expressions:

Y ‘a
1 0 +  alxl +  a2x2 +  cl’

(3)

(4)

where Y and Y are, respectively, organ system function and self-reported
disabil~ty, X12 is pollution, X

2“
is a vector of the other predetermined vari-

ables, and the s’s are random lsturbances. Given (3), estimating (4) is
equivalent to estimating the reduced form equation,

(5)

where p = c +6E.
3

If the contemporaneous disturbances in (3) and (4) are
uncorrelate , 11sing e equation MLE of (3) and (4) are equivalent to full-
information estimation of this system.

However, if Y is unobservable,
1

some investigators have simply estimated

‘2 = ‘o + Ylxl + Y2X2 + p
(6)

Thus , if a MLE of (6) is to yield the same estimate of the impact of
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FIGURE 7.1,

A SCHEMATIC FOR AIR POLLUTION HEALTH EFFECTS
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pollution, X1, on self-reported disability, Y2, as would a MLE of (4) given
(3), Y1 must equal 6 al. For this to occur, c and c and the X’s in (5) must

ibe pair-wise uncorre ated [see Judge, et al. i(~980, C ap. 13)]. Otherwise the
estimate of y will be biased and inefficient.

1

However, the random disturbances that influence organ system functions
seem unlikely to be independent of factors affecting self-reported
disabilities. For example, assuming that occupational exposures to toxics is
not included among the explanatory variables of (3), and hence are part of the
error, an exposure of this sort is likely to intensify the impact in (6) of
any particular level of outdoor pollution upon self-reported disability.
Instrumental variable methods, which involve the substitution into (4) of a
proxy for Y that is both highly correlated with it yet uncorrelated with c

1are availab e to overcome this problem. In the context of the structure 2’

represented by (3) and (4), it is not obvious what this proxy might be without
additional prior information about (3). Further, use of a proxy in (6) would
yield consistent but inefficient estimates of y . In short, whether an

1
instrumental variable or a direct measure of X is used, the power of the

1
regression significance tests will most likely be reduced, requiring either a
larger sample or more a priori information to maintain a given degree of test
power.

Measures of the effective functioning of organ systems completely remove
the necessity of wrestling with these particular estimation issues involving
unobserved variables. This may be the reason that mortality rates and, more
recently, time-to-system failure, have held great appeal as a measure of the
health status of a population. Both the biomedical and the economic air
pollution epidemiology literature would be considerably advanced through
access to direct clinical measures of organ system functions or changes in
metabolic processes.

Selection of Values of the Design Matrix

Having selected the appropriate model and the functional form and
dimension of the design matrix, additional gains in efficiency can be achieved
through the optimal choice of values of the design matrix. This includes both
selection of the optimal values of the design variables under the control of
the experimenter and the optimal number of observations of each selected
value. Solution of this problem [see Figure 1, and Conlisk and Watts (1969)]
involves minimizing an objective function, equal to a weighted function of the
covariance matrix of the estimated parameters (where weights indicate the
a priori importance attached to precise estimation of each variable) subject
to a cost constraint on the experiment. The application of this technique to
the creation of an epidemiological  data base is straight forward. However,
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again the estimator risk of this procedure depends on the risk associated with
the exclusion of variables from the design matrix, the choice of functional
form, and the choice of model to be estimated.

Choice of Density Function for Dependent Variable
.

The assumed density function of the dependent variable, and hence the
error term, has been limited to the normal distribution for purposes of
regression analysis throughout the economics literature. However, in many
cases, the assumption of a normal density is unwarranted. When the dependent
variable is a positive-valued variable representing either time-to-failure for
a system or the mortality or morbidity rate for a specific population,
previous empirical evidence yields strong priors which argue against the
validity of a normal density. In fact, a substantial body of biomedical
literature [see Kalbfleisch  and Prentice (1980)] has made substantial use of
non-normal models. The consequences of incorrectly assuming a normal density
are estimator bias, since the parameters describing the likelihood function
are incorrect, and possibly a loss in efficiency. Researchers in the
biomedical area have adopted two principal models relying on non-normal
density functions for the dependent variable in regression analysis. The
first involves formulating a parametric regression model based on the
generalized F distribution. Parametric restrictions on this distribution
specialize it to the Weibull (which further specializes to the exponential),
the generalized Gamma (which further specializes to the Gamma), the log
logistic, and the log normal [see Kalbfleisch and Prentice (1980)]. Although
hypothesis testing for nested densities has been carried out using MLE
pre-test  estimators, we recommend use of the positive-part Stein-rule
estimator for the reasons discussed above. The second principal type of
non-normal regression model is the partially parametric Cox (1972)
proportional hazards (CPH) model or a non-proportional hazards generalization
thereof. The CPH model is termed partially non-parametric because, with the
introduction of appropriate parametric restrictions, it specializes to the
Weibull and experimental regression models. In the case of a discrete
dependent variable, the CPH model specializes to the logistic model. [See
Kalbfleisch  and Prentice, (1980, pp. 36-37)]. The CPH model has recently been
applied to an increasingly wide number of regression problems attempting to
explain system time-to-failure. The choice of a partially non-parametric
model such as the CPH model in lieu of one of its nested counterparts (e.g.,
the Weibull or exponential regression models) is again based on minimum risk.
Estimated parameters from the CPH model will have less bias that those from
the nested models, but will be less efficient. However, Kalbfleisch and
Prentice (1980) indicate that the CPH estimator possesses excellent relative
asympotic efficiency as well as small sample efficiency compared to nested
alterations. Thus, although the evidence regarding efficiency and risk is not
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compete, the CPH model appears to afford a considerable increase in
flexibility with little increase in risk. Additionally, it allows testing for
and accepting its nested densities. The alternative of imposing one of the
nested forms appears to offer little gain in efficiency at the risk of
considerable increase in bias.

A CRITICAL REVIEW OF THE DOSE-RESPONSE LITERATURE

Over the past decade numerous studies of the economic value of the
adverse health effects from air pollution have been carried out by economists
and epidemiologists. The ultimate goal of these analyses has been the
estimation of defensible functional relationships between dose and response,
and then to estimate the resulting economic losses, so that marginal benefits
of pollution reduction can be derived from them. The optimal level of
pollution control can then be determined where the marginal benefit equals the
marginal cost of additional pollution reduction. Recently, substantial
controversy has developed over the adequacy and validity of certain
methodological approaches and empirical results of studies quantifying
dose-response relationships.

In general, there appears to be a minimal attempt in this literature to
utilize prior information to formulate and test restrictions of the type
previously discussed.

Although the health effects of air pollutants have long been studied in
laboratories by toxicologists, there appears to be limited use of this
information in non-laboratory studies by epidemiologists. Laboratory
experiments on animals allow careful control of the level of individual
pollutants, other covariates, and a detailed record of response. These
studies, therefore, have been useful for identifying potential human health
effects.

Laboratory experiments with human subjects avoid extrapolation from
animal to man, but raise other concerns, such as ethical
considerations and practical difficulties in studying long-tern
exposures. In addition, laboratory studies cannot duplicate the
activity patterns and pollutant mixture experienced by free-living
populations. Within these constraints, experiments involving human
subjects can be conducted and used to establish ley~ls a:es;:;:h
adverse responses occur after short-term exposures .—. their
limitations, much of what has been learned from laboratory studies could
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be employed to provide structure for epidemiological studies. However, many
epidemiological  studies appear to ignore much of the toxicological literature
by assuming linear dose-response functions, thereby failing to investigate
possibl~,  ys nergistic effects among pollutants and other important personal
factor- as well as more complex non-linear mathematical dose-response models
based on non-n~;ma~ distributions, which have been observed by
toxicologists.–

Studies of occupational groups have been suggested as another source of
information. Although such non-experimental studies may allow accurate
estimates of exposure, the mix of pollutants and concentrations in workplaces
is usually different than the mix in the general ambient air. Exposures are
for only work hours rather than the entire day. Temperature and humidity
conditions are also likely to differ in important ways from those
experienced by the general population. The very young, elderly, and ill are
not included. There is considerable selection by the employer and
self-selection by the worker, so that those with current disease or those who
are more sensitive or more susceptible are found among the employed less
frequently than in the general population. Consequently, one cannot
extrapolate from findings for occupational groups to the general population.
On the other hand, if an association between an air pollutant and a health
effect is found in an occupational setting, we would expect a greater
association in the general population, if exposed to the same level of the
particular pollutant.

In view of these limitations, most of the relevant information about the
health effects of air pollutants at levels of exposure near present ambient
conditions must come from observational studies of the general population.
Here, too, there are limitations with respect to estimating exposure and
measuring health effects. Uncontrolled variations in ambient pollution levels
make it difficult to determine whether mean concentrations, peak
concentration, the variance, or some other measure of air pollution
concentration is the most important determinant of health. Additionally,
pollution data are usually obtained from outdoor monitoring stations, but the
actual exposure burden can vary greatly between individuals even living in the
same neighborhood. Outdoor micrometeorology and indoor environment can sig-
nificantly alter exposure [Benson, et al. , (1972)1 . This imprecision tends to
bias estimated associations between air pollution and health effects toward
zero. Moreover, health endpoints, including frequency of symptoms, lung
function, hospital admissions, and cause of death also are measured with
substantial variability. When an association between air pollution and health
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is found, a high degree of collinearity between pollutants and the possibility
of complex chemical interactions may make it very difficult to associate any
health effect with a single pollutant.

Much of the recent work in air pollution epidemiology has focused upon
estimation of a linear regression model based on the assumption of a normal
error term, where a measure of the incidence of mortality or morbidity is.
regressed on air quality and other covariates. Many covariates are “personal”
factors such as diet, smoking habits, exercise, medical care, age, sex,
occupation, income, and genetic predisposition--while others are environmental
factors-- such as quality of drinking water, toxic contamination, temperature,
humidity, and exposure to allergins.

Many epidemi.ological  studies originating in the biomedical disciplines
and sanctified in existing Federal clean air legislation, assumes a positive
level of air pollution or hreshold below which no individual will suffer a

Sj
decline in health status.– However, this assumption is clearly a testable
hypothesis. The first attempt to employ regression analysis to investigate
the health effects of particulate and sulfate air pollution (i.e., principally
stationary source pollution) at a national level without the presumption of a
threshold was the pathbreaking effort of Lave and Seskin (1970). Using a
cross-section of 114 U.S. metropolitan areas, they employed single equation,
ordinary-least-squares methods to regress 1960 mortality rates upon ambient
concentrations of sulfates and particulate, and other demographic and socio-
economic variables. However, they maintained rather than tested the
hypothesis that personal factors such as medical care, smoking, and ingestion
of fat and alcohol were distributed independently of pollution levels. Thus ,
Lave-Seskin’s  analysis is immediately suspected of omitted variable bias,
since there is substantial evidence that these factors synergistically
interact with air pollution. They tentatively concluded that air pollution
caused statistically significant health effects.

This original study has inspired a substantial number of similar studies,
including the culminating effort of Lave and Seskin (1977). Included in this
list are studies by Gregor (1977), Wyza (1978), Mendelssohn and Orcutt (1979),
Seneca and Asch (1979), and Lipfert (1979) involving the mortality effects of
sulfur oxides, sulfates, and particulate, and Schwing and McDonald (1976)
involving the mortality effects of carbon monoxide, nitrogen dioxide, hydro-
carbons, and photochemical oxidants. Studies of the morbidity effects of air .

pollutants include those by Jaksch (1973) and Seskin (1979). These mortality
and morbidity, without exception, all have discerned a significant inverse
association between mortality rates and one or more air pollutants, and in
general these studies employ the model and functional form of Lave and Seskin,
The results of these and more recent studies, which significantly question the
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validity of the Lave-Seskin assumptions and results, are summarized in Table
1. V.K. Smith (1977), who used data for 50 U.S. metropolitan areas in
1968-1969, applied versions of the Ramsey (1969) tests for specification error
in the general linear model to 36 different single equation specifications.
These specifications were similar, and often identical, to those greeted with
the most approval by Lave-Seskin, and others. None of the specifications
could pass all of the Ramsey tests at the 10 percent level, although four
passed all tests except that for non-normal errors which was rejected by all
specifications. This result is particularly disturbing. Since Lave-Seskin
estimated a linear single-equation model, the change or variable theorem
indicates that the dependent variable, mortality rates, are also non-normally
distributed. Thus, maximum likelihood techniques should have been employed to
estimate a non-normal model, e-9.# the COX proportional hazard model or the
Weibull or exponential regression models which are restricted cases thereof.
This analysis could even be extended to include Bayesian prior distribution
quality and other socio-economic and demographic variables.

Second, Thibodeau, et al. (1980) report on a limited reanalysis of the
Lave and Seskin data. While they did notargue the existence of a
health-pollution association, they questioned Lave and Seskin’s methodology.
In particular they found significant lack-of-fit and their reanalysis resulted
in estimated effects which differed considerably from those reported by Lave
and Seskin.

In a recent monograph, Crocker-Schulze, et al. (1979, pp. 24-71) analyzed
1970 mortality data from a cross-section of 60 cities while trying to correct
for potential omitted independent variable and simultaneous equation
misspecification. Adding measures of medical care, cigarette consumption, and
diet to the single equation Lave-Seskin, specification, they found a
nonstatistically significant effect of nitrogen dioxide, total susgmded
particulate, and sulfur dioxide upon the rate of total mortality,— in sharp
contrast to the results of Lave and Seskin. Retaining the former variables
and accounting for the plausible simultaneity between health status and
medical care did nothing to improve the statistical significance of the three
air pollution variables. On the presumption that these findings were
sufficient to demonstrate the lack of robustness in the Lave-Seskin type
results, the authors did not go on to account for the obvious simultaneity
between median age (or incidence) and several other plausible sources of
simultaneity.

The results of Crocker-Schulze  et al. (1979) , indicating that
the Lave-Seskin type of analysis suffers from omitted variable bias,
are given additional support by Graves, Krumm, and Violette
(1979) who found significant synergisms between pollutant levels and
personal factors in explaining mortality rates. Thus ,
Lave-Seskin should have tested rather than maintained the hypothesis
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TABLE 7.1

A SUMMARY OF EPIDEMIOLOGICAL STUDIES OF AIR POLLUTION

The Effect of Air Pollution on Human Morbidity and Mortality
.,

Mortality

Pollutants Used
to Explain Level

Model and of Dependent
Author

Lave and Seskin (1970)
(1977)

Crocker et al. (1970)
model; linear
regression of
simultaneous
equations

Lipfert (1979a)
model; linear
regression

Gregor (1977)
model; linear
regression

Seneca and Asch (1979)
model; linear
regression

Wyzga (1978)
model; linear
regression with
lagged dependent
variable

Functional Form Variable

general linear model; sulfur oxides and
linear regression particulate

general linear nitrogen dioxide
sulfur dioxide

aand particulate

general linear
particulate, and
Sulfatesa

general linear
particulatesa

general linear
and sulfur dioxide

general linear

sulfur dioxide

sulfur dioxide

sum of particulate

particulate
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TABLE 7.1 (continued)

Mendelssohn and Orcutt
(1979)

regression

Schwing and McDonald
(1976)

Morbidity

Author

Jaksch (1973)

Crocker et al. (1979)

Graves and Krumm (1979)

general linear sulfates,
model, linear carbon monoxide,
and sulfur dioxide

general linear hydrocarbons and

model; linear
a

nitrates
regression, ridge
regression, and sign
constrained least
squares

Model and
Functional Form

general linear
model; linear
regression

general linear
model; linear
regression and
recursive linear
regression

Pollutants Used
to Explain Level
of Dependent
Variable

particulatesa

nitrogen dioxide
sulfur dioxide,

a
and particulate

general linear sulfur dioxide and
model; second particulate
order Taylor
expansion

Seskin (1979) general linear model; photochemical
linear regression oxidant

a Indicates dependent variable explained by personal factors as well as air
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that personal factors are independent of air pollution with the framework a
simultaneous equation BOX-COX model.

The results obtained by V.K. Smith (1977), Thibodeau, et al, (19gO), and
Crocker-Schulze,  et al. (1979) cast doubt upon the robustness of the Lave-
Seskin, et al. estimates, in spite of the no-threshold perspective embodied in
these estimates. These doubts are particularly bothersome when the results
are extrapolated to project pollution regulation impacts. Nevertheless,
before dismissing the hypothesis of an inverse relation between everyday air
pollution levels and health states, it must be recognized that Lave-Seskin,

:;V;:;’77
ay have been asking more of their data than it was capable of

.— Less than one in every 100 people dies in the U.S. each year. NO
biomedical authority asserts that air pollution is the dominant cause of the
deaths that do occur. Many take the view that it is the direct cause of no
more than a small fraction of these deaths, although they would agree that it
may be quite important in intensifying predispositions toward mortality.
However, the general properties of the underlying processes that encourage
this predisposition are ill-understood. Thus, even with quite large samples,
available estimation techniques and a priori knowledge may be inadequate for
distinguishing the mortality effects of air pollution in a human population
sample from a host of similar and plausible minor contributing factors.

The possible inadequacy of many available techniques for estimating the
existence and/or magnitude of air pollutant-induced mortality applies with
special force, given the data Lave-Seskin and their successors had to employ.
Their work can be interpreted as an attempt at establishing the probability of
a representative individual currently residing in a representative region
dying in a given year from a geographically representative level of air
pollution. Lave and Seskin justify their use of cross-section regional data
on the grounds that these data reflect long-run adjustments by capturing
response to pollution levels that have existed for long periods of time.
Clearly, this assumption is questionable for many areas where pollution levels
and populations at risk (due, e.g. , to in and out migration) have changed over
time. In addition, since they had no information about the distribution of
covariates including air pollution across urban areas, the ident”~~ying
variabilities of their samples were perhaps drastically reduced.— When this
relatively low variability of the samples is coupled with what are probably
substantial measurement errors in the air pollution variables, attempted
corrections in model specification may serve only to misinform.

The preceding remarks lead us to three conclusions. First, given the
biomedical and economic subtleties inherent in comprehending the etiologies of
air pollution-induced mortality and morbidity, the estinates obtained from
aggregated data used in the great bulk of extant studies are unlikely ever to
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be sufficiently compelling to establish a consensus. Only when physiological
models are coupled with observations on individuals can we expect compelling
evidence. Second, statistical power should be substantially increased if
research concentrates on morbidity rather than mortality. The frequency, and
most likely the identifying variability, of morbidity data appears to be
greater than that for mortality data by a factor of fifteen or twenty.
Greater variability’is also expected with more disaggregated data sets on
mortality or mortality for the same reason. Finally, because one’s health
status is influenced by choices about lifestyles, environmental and
occupational exposures to possible toxics, and other health-influencing
factors, economics can provide ~priori hypotheses and an analytical framework
to lend additional structure to epidemiological  investigations. The
researcher can then further narrow the relationships with which observed real
world outcomes can be compared. That is, the limited prior information from
the existing epidemiological  studies contribute something worthwhile to our
goal of parsimonious data collection, but still confronts us with an
enormously large parameter space, many elements of which could be
insignificant for human health status. The more correct a priori information
we can introduce to the problem, the greater the reduction in estimator risk.
Given that health effect estimates are to be used for valuation assessments,
efforts to reduce the severity of this tradeoff become particularly
worthwhile.

A CRITICAL REVIEW OF THE VALUATION OF HEALTH EFFECTS LITERATURE

Economic Valuation of Mortality and Morbidity

Two principal methods of valuing mortality have been utilized in the
empirical studies valuing human health. The first involves calculating the
discounted present value of earnings lost due to mortality or morbidity [see
Weisbrod (1971) and Cooper and Rice (1976)]. This is generally agreed to be
an incorrect measure of the true value of mortality and morbidity, whose
theoretically correct measure is either the willingness-to-pay to avoid
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or the compensation required to voluntarily accept such adverse

.— At best, the discounted present value measure is a very limited
estimate of the value of life (e.g., zero for the unemployed or retired) and
does not allow for observed trade-offs in the job market between wages and
risk of death or injury.

The second method of valuing mortality and morbidity involves estimating
willingness-to-pay for risk reduction from: 1) surveys or questionnaires; 2)
wage premiums for hazardous occupations; and 3) the cost and estimated
effectiveness of safety devices. An individual’s willingness-to-pay for a
small reduction in the probability of death is generally extrapolated to
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calculate the value of statistical life.

Two willingness-to-pay surveys have been conducted to estimate the value
of life. Acton (1973) asked a sample of 37 Boston area residents to state

their willingness to pay for emergency coronary care facilities which would
reduce the probability of a fatal heart attack. From the responses, Acton
estimated a value o’f life of less than $100,000 ($ 1978). Jones-Lee (1976)
estimated a far higher value of life in excess of $6 million ($ 1978) for
safer air travel, by asking travelers their willingness to pay higher fares to
travel on airlines with lower probabilities of a fatal crash. However,
difficulties in obtaining reliable estimates to theoretical questions arise
because of incentives for strategic behavior, e.g., with public goods, and the
limited ability of the individual to make an accurate determination of
preferences in hypothetical situations. See Freeman (1979) for a discussion
of attempts to overcome various types of strategic bias.

A more fruitful approach has been taken by a number of studies attempting
to measure the value of life from data on wage differentials in hazardous
occupations. Thaler and Rosen (1976) analyzed a sample of 900 individuals in
37 high-risk occupations taken from the records of the Survey of Economic
Opportunity. They explained wage differentials among these occupations with:
(1) the extent to which the risk of accidental death exceeded the expected
average from statistical life tables; (2) regional and urban dummy variables;
(3) demographic characteristics; and (4) job characteristic and occupational
dummy variables. By extrapolating risk to zero, Thaler and Rosen calculated a
value of life ranging from $273,000 to $508,000, with a best estimate of
$391,000 ($ 1978). Using the same data on wages but different estimations of
occupational risk, R.S. Smith (1976) obtained substantially higher estimates
of the value of life, ranging from $2.2 million to $5.1 million ($ 1978).
Finally, using a different data set, Viscusi (1976) obtained estimates ranging
from $1.8 to $2.7 million ($ 1978) for blue-collar workers.

Three caveats must be applied to the use of these estimates. First, they
represent the value of marginal changes in the probability of death extra-
polated to a zero probability of death. If the marginal valuation of
different probabilities varies significantly, this extrapolation may be highly
biased. Secondly, the willingness to pay measured by these studies most
likely is associated with accidental death and excludes the value of the
disutility associated with the morbidity, pain, suffering with characterize
fatal but chronic diseases such as cancer. Thus, these estimates may
understate the willingness to pay by the general population. Finally, data on
risk by occupation are not corrected for the fact that omitted personal
characteristics are often associated with high risk jobs which account for
non-job related deaths. Thus , a certain component of increased mortality
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cannot be associated with a corresponding wage differential.

Studies estimating the willingness to pay by the general population for
risk reduction as evidenced in consumer purchases of safety devices include
those by Blomquist (1979) and Dardis (1980). Blomquist (1979) developed a
simple life-cycle model of individual life-saving activity and estimates a
value of life base& on automobile seat belt use. Solution of his simple
utility optimization model yields the first-order condition that the marginal
value product of reduced mortality plus the marginal value product of reduced
morbidity equals marginal cost. Blomquist then used probit analysis to
explain the incidence of seat belt use with a set of demographic variables,
length of work trip, speed limit, labor wealth, and wage rate. This fitted
equation, evaluated at the mean of the data is equated to the net marginal
benefits of seat belt use, up to a factor or proportionality, equal to the
variance of the dependent variable. Assuming zero time and disutility costs
of operation, the implied value of life is solved from this equation. His
estimates of the average value of life, based on a non-random sample of about
5,500 households in A Panel Study of Income Dynamics, 1968-1974 is $370,()(30 ($
1978) . However, Blomquist relies heavily of the estimated wage coefficient in
the profit equation to estimate the variance of the dependent variable. To
the extent that the wage rate does not accurately reflect value of life, these
estimates will be biased.

Dardis estimates willingness to pay for risk reduction by examining data
on consumers’ voluntary purchase of smoke detectors and their expected
reduction in the incidence of death by fire. He estimates the annualized cost
of smoke detectors per household based on a catalog purchase price, life
expectancy of ten years, an average of 1.5 smoke detectors per household, and
discount rates of 5% and 10%. Then under the assumption that 13% of
households in 1976 were equipped with detectors, that only 80% of these were
functional, and that these functional detectors provided only 45% protection,
the total deaths in the absence of functional detectors was estimated at
6,492. Savings of life from the provision of smoke detectors in each
household was then estimated at 2,337 (equal to .8 x .45 x 6,492) for a
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probability of reduction in death of 3.16 x 10 for all households.
Combining this probability with the annualized cost of smoke detectors yielded
estimates of the value of life to purchasing households ranging from $293,000
to $341,000 ($ 1978). The estimated value of life to the entire population
was considerably less - ranging from $157,000 to $175,000 ($ 1978).

Although the behavior of the general population is observed in these two
studies of consumer safety devices, there are many important shortcomings to
their work. The first two caveats associated with the wage rate willingness
to pay studies also apply to the studies by Blomquist and Dardis. In
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addition, the most serious problem with Dardis’ approach is that the total
value of consumer willingness to pay cannot be accurately estimated using the
selling price of the safety device. Clearly, many consumers with higher
subjective probabilities of risk would pay far more than the modest price of
the detector, whose production costs are substantially lowered by scale
economies. However, the empirical importance of this bias is not clear. In
light of these shortcomings, we suggest the following theoretical structure
for hypothesis testing in valuing health effects.

The problem of valuing health effects is the discovery of the rates at
which individuals are willing to substitute air pollution-induced changes in
health status for money or its equivalent. The conceptual framework employed
in the great bulk of the work on the demand for health is the household pro-
duction model, particularly its human capital versions [Grossman (1972),
Crocker-Schulze,  et al. (1979, pp. 137-149)]. In this framework, the indiv-
idual or family unit is viewed as a firm attempting to maximize utility
subject to constraints on the household budget and the production of goods and
services which yield utility. Market goods and services are purchased and
combined with the time of various family members in production. Household
members are therefore implicit demanders of their own time resources as well
as of the factors, including health status, that influence what they are able
to do with these time resources. The framework is useful for studying the
value of air pollution-induced health effects because: (1) it assesses
individual well- being by “full income”--the value of all the individual’s

time, including time passed in productive nonmarket activities such as raising
children--and not merely by his money income; and (2) it provides a means of
introducing a priori information on behavior of organ systems into a health
production function.

Within the household production framework, changes in behavior due to a
change in air pollution-induced health status flow from three major sources.
First, a change in health status can change the income and wealth positions of
some individuals, thus changing the amount and possibly the mix of
“commodities” these individuals consume. Second, changes in health status may
influence the type of income sought by the individual. Individuals can be

expected to shift their efforts and investment patterns toward obtaining those
types of income that yield the highest net return for expended time and money.
Alternatively, because of increases in the difficulty of internal financing,
reductions in self-investment, job search schooling, on-the-job-training, and
migration may occur. Finally, various income support programs as well as the
individual’s social reputation are contingent upon others’ perceptions of
one’s health status. Therefore, to the extent possible, individuals will tend
to tailor their self-reported health status to increase their chances of being
categorized in a manner offering them the most advantageous time and money
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terms.

Thus, changes in wage rates and income will reflect, to a degree, changes
in health status. Wages, which are the most important source of income for
most households, are fairly accurately reported in most data sets. However,
this by no means implies that they are free of measurement error and other
problems. There are” at least three major difficulties with most wage data.

First, the individual’s behavior is based upon his marginal, not his
average, wage rate. The marginal wage rate is net of taxes and it must be
adjusted for fringe benefits and for the cost-of-living. Since marginal and
average rates obviously differ for all persons subject to progressive income
taxes, failure to take account of these taxes will bias toward zero the
estimated coefficient relating hours worked to wages.

Second, the wage rate used for estimation should distinguish between the
permanent and the transitory components of wages [J.P. Smith (1977)]. The
observed wage rate may be systematically related to the wages the individual
expects to receive in the future. Ignoring anticipations regarding wage
profiles over the life cycle can lead to seriously biased results. For
example, if people who currently receive relatively high wages anticipate more
steeply sloped wage profiles than do low wage people, the effect of current
wage on labor supply is likely to be underestimated. To help control for the
effect of differences in permanent and transitory wages, J.P. Smith suggests
estimating expressions using cross-sectional data on narrowly defined age
groups.

Third, data must be provided that allows the imputation of wage rates for
nonworkers, many of whom adopt this status because of health problems. One
solution is to impute a potential wage rate for nonworkers on the basis of the
wages obsened for healthy persons of otherwise similar characteristics for
whom wage data is available. Gronau (1974) shows, however, that this
procedure will overstate wage rates for individuals belonging to groups with
low labor market participation rates.

Changes in income can occur for reasons other than changes in the wage
rate. In particular, it is necessary to know the individual’s and the
household’s nonemployment  income flows. For most households, the primary
sources of nonemployment income are the home and the automobile. Ignoring the
nonmonetized returns from these assets can seriously bias estimated relations
between changes in income levels and changes in behavior. J.P. Smith (1977)
suggests that the problem of imputing values to nonmonetized assets can be
avoided if subsamples are defined to include individuals who are at the same
point in their life cycles and have had similar wage paths and other factors
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that may influence their time allocations over the life cycle.

Another important determinant of individual income is the amount of labor
the individual supplies. Because of disequilibria in labor markets, the
actual hours of employment for some persons may differ substantially from the
number of hours they wish to work at the wage rate they receive [Ashenfelter
(1977)]. When assessing the value of air pollution-induced changes in health
status, we wish to know the changes in actual hours worked.

All of the above wage and labor supply responses may differ among various
types of people; that is, the characteristics defining types of people may
interact with the explanatory variables of the expressions to be estimated.
When these characteristics are exogenous, and when the existence but not the
form of the interaction is known, the sample must be stratified so that
separate estimates can be made for each type. Failure to do so can lead to
seriously misleading estimates. Crocker and Horst (forthcoming) have shown,
for example, that reductions of the earnings of workers in the same occupation
exposed to near-identical ambient concentrations in Los Angeles vary between
zero and nine percent. Pooling these workers would have imposed statistically
unacceptable restrictions. In light of the preceding discussion of the
optimal use of prior information we draw the following conclusion: in the
absence of prior information and hypothesis testing, the “ideal” data set
cannot be specified. One can only say that data on all imaginable factors
that affect health status, will not be ideal since it will produce intolerable
risk. To minimize risk, we must introduce priors from accumulated statistical
evidence to structure testable hypotheses about functional form;
dimensionality  of the parameter space, the model, the values of the design
matrix under experimental control, and the density of the dependent variable,
and we must employ optimal test procedures otherwise, there is no optimal way
to judge the value of a data set. A good approximate specification of what
would be ideal must therefore wait upon the results of explorations of what is
gained by imposing more structure on existing data sets. For example, the
introduction into the model structure of expressions for metabolic processes
and organ system functions can provide identifying restrictions for the
parameters of the self-reported disability, even though such data are scarce.
Of course, the most complete identifying restrictions would be obtained if
direct observations were available on these processes and functions. A data
set having these observations could then be used to assess the gains from
including expressions for these undeserveable  processes and functions in the
model structure relative to the gains from having direct observations on them.
Given the likely expense of collecting accurate data on organ system
functions, for example, a prior assessment of the size of these gains seems a
worthwhile investment.
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steps in the causal chain in Figure 1 as the HES data set. This is the Health
Examination Survey (HES) data set collected from late 1959 through 1962 for a
nationwide sample of 7710 adult, civilian, noninstitutionalized individuals
[National Center for Health Statistics (1965)]. Given the early date of the
HES data set and the broadness of its locational information (counties or sets
of counties) , more measurement error than usual would be introduced when the
set was matched with air pollution information. However, as Leaderer (1979)
has suggested, visibility information from airports might serve as a very
adequate proxy for fine particles which are suspected as the major source of
health impairment from air pollution.

CONCLUSIONS AND RECOMMENDATIONS

Neither epidemiologists nor economists are yet able to provide estimates
of the health consequences of air pollution with sufficiently reliable
hypotheses to carry out a defensible cost-benefits analysis. The range of
uncertainty is unacceptably large. A traditional response to unacceptably
large ranges of uncertainty is a plea for undertaking a fresh data collection
effort. TO say that one wants all “feasible” information on individuals’
genetic and social endowments, metabolic processes, organ system functions,
past and present life-style habits, risk exposures other than air pollution,
attitudinal variables related to stress, indoor and outdoor air pollution
exposures, family characteristics and employment opportunities, as well as a
history of time and budget allocations is to say little. Minimization of
estimator risk requires physiological and economic models to specify testable
hypotheses and hence to guide the data specification. A great deal of
relevant economic information will have been made available when the measures
of labor supply, wages, and income described in the previous sections are
generated. Smoking habit information, diet, and occupational exposures appear
to be necessary. Beyond this, data sets must be collected and explored with
the explicit objective of minimizing estimator form, model selection,
experimental control of the design matrix, and choice of density function for
the dependent variable. This will require that more attention be devoted to
the role played by organ system functions using data disaggregated to the
individual level. Expressions which purport to explain these functions, along
with expressions which explain time and budget allocations, will most likely
become the major sources of a priori information that can be used to bound the
investigation. Thus, the ep~demiologist is at the difficult position where
more testable hypotheses appear to be as important as more data.
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